博客
关于我
Deep Learning---caffe模型参数量(weights)计算
阅读量:78 次
发布时间:2019-02-25

本文共 1173 字,大约阅读时间需要 3 分钟。

Draw_convnet

这里写图片描述

这幅图是通过开源的工具draw_convnet()生成的。在清楚整个前向计算网络中的每一个层的输入输出以及参数设置后可以自己手动画出计算图出来,对于参数量计算就很直观了。

feature map大小计算

输入:N0*C0*H0*W0 输出:N1*C1*H1*W1 输出的feature map大小: H1=(H0+2×pad−kernel_size) / stride+1 W1=(W0+2×pad−kernel_size) / stride+1 当输入的H0 == W0时,公式可以简化为:H1=W1=(h + 2xpad - kernel_size) / stride + 1注:当stride为1时,若pad=(kernel_size−1)  / 2,那么经过计算后的feature map大小不变

以LeNet-5为例

下面是一个多通道图像的输入LeNet-5网络前向计算模拟图:

LeNet-5

  • 网状立体格子表示kernel,其他颜色方图表示feature map(Input表示输入层,可以看做特殊的feature map)
  • 一个kernel对应一个feature map
  • 参数量主要为kernel大小
  • 每个kernel带一个bias

整个网络占据权重的为Convolution/Innerproduct 两层,分别计算参数量为,:

C1: 5 x 5 x 20 =  500,5x5卷积核, 20个feature map输出,20个kernelC2: 20x 5 x 5 x 50 = 25000 ,20维度输入,则20x5x5 kernel,50个feature map输出,即相当于20通道的图像输入,则需要20x5x5的kernel来卷积乘,50个这样的卷积核操作得到50个feature map,50个kernelF1: 50x4x4x500 = 400000,50维度特征图输入,全连接,每个点做卷积乘,则kernel大小为50x4x4,共500个feature map输出,500个kernelF2 : 500x1x1x10 = 5000,500维度特征图输入,全连接,kernel大小为500x1x1,共10个feature map输出,10个kernel

用4bytes的float类型来存储参数,则总的参数量大小为:

500 + 25000 + 400000 + 5000 + (20 + 50 + 500 + 10) =  431080

字节数为:

431080 x 4 = 1724320 ≈ 1683.90625kb ≈ 1.64M

对比实际LeNet-5网络基于caffe训练出来的模型大小为:1.64 MB (1,725,025 字节),基本接近,因为模型中可能还带有附加特性参数。

参考资料:

你可能感兴趣的文章
Mysql索引(2):索引结构
查看>>
Mysql索引(3):索引分类
查看>>
Mysql索引(4):索引语法
查看>>
mysql级联删除_Mysql笔记系列,DQL基础复习,Mysql的约束与范式
查看>>
mysql练习语句
查看>>
mysql经常使用命令
查看>>
MySQL经常使用技巧
查看>>
mysql给root开启远程访问权限,修改root密码
查看>>
mysql给账号授权相关功能 | 表、视图等
查看>>
MySQL缓存使用率超过80%的解决方法
查看>>
Mysql缓存调优的基本知识(附Demo)
查看>>
mysql编写存储过程
查看>>
mysql网站打开慢问题排查&数据库优化
查看>>
mysql网络部分代码
查看>>
mysql联合索引 where_mysql联合索引与Where子句优化浅析
查看>>
mysql联合索引的最左前缀匹配原则
查看>>
MySQL聚簇索引
查看>>
mysql自动化同步校验_Shell: 分享MySQL数据同步+主从复制自动化脚本_20190313_七侠镇莫尛貝...
查看>>
Mysql自增id理解
查看>>
mysql自增id超大问题查询
查看>>